Doubled power density from salinity gradients at reduced intermembrane distance.
نویسندگان
چکیده
The mixing of sea and river water can be used as a renewable energy source. The Gibbs free energy that is released when salt and fresh water mix can be captured in a process called reverse electrodialysis (RED). This research investigates the effect of the intermembrane distance and the feedwater flow rate in RED as a route to double the power density output. Intermembrane distances of 60, 100, 200, and 485 μm were experimentally investigated, using spacers to impose the intermembrane distance. The generated (gross) power densities (i.e., generated power per membrane area) are larger for smaller intermembrane distances. A maximum value of 2.2 W/m(2) is achieved, which is almost double the maximum power density reported in previous work. In addition, the energy efficiency is significantly higher for smaller intermembrane distances. New improvements need to focus on reducing the pressure drop required to pump the feedwater through the RED-device using a spacerless design. In that case power outputs of more than 4 W per m(2) of membrane area at small intermembrane distances are envisaged.
منابع مشابه
Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are emerging membrane-based technologies that can convert chemical energy in salinity gradients to useful work. The two processes have intrinsically different working principles: controlled mixing in PRO is achieved by water permeation across salt-rejecting membranes, whereas RED is driven by ion flux across charged membranes. Th...
متن کاملInfluence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.
Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite mem...
متن کاملThermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
Reverse electrodialysis (RED) can harness the Gibbs free energy of mixing when fresh river water flows into the sea for sustainable power generation. In this study, we carry out a thermodynamic and energy efficiency analysis of RED power generation, and assess the membrane power density. First, we present a reversible thermodynamic model for RED and verify that the theoretical maximum extractab...
متن کاملVertical Structure and Double Diffusion Convection of the Water Column in the Southern Shores of the Caspian Sea
Background and Objectives: Different types of instability occur at sea. Layered structures are one of the most important physical phenomena in marine environments. Static stability and double diffusion are associated with density changes with respect to depth and temperature and salinity gradients, respectively. Due to the difference in temperature and salinity in the water column, marine areas...
متن کاملThermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.
The Gibbs free energy of mixing dissipated when fresh river water flows into the sea can be harnessed for sustainable power generation. Pressure retarded osmosis (PRO) is one of the methods proposed to generate power from natural salinity gradients. In this study, we carry out a thermodynamic and energy efficiency analysis of PRO work extraction. First, we present a reversible thermodynamic mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 45 16 شماره
صفحات -
تاریخ انتشار 2011